33 research outputs found

    The Complexity of Counting Homomorphisms to Cactus Graphs Modulo 2

    Full text link
    A homomorphism from a graph G to a graph H is a function from V(G) to V(H) that preserves edges. Many combinatorial structures that arise in mathematics and computer science can be represented naturally as graph homomorphisms and as weighted sums of graph homomorphisms. In this paper, we study the complexity of counting homomorphisms modulo 2. The complexity of modular counting was introduced by Papadimitriou and Zachos and it has been pioneered by Valiant who famously introduced a problem for which counting modulo 7 is easy but counting modulo 2 is intractable. Modular counting provides a rich setting in which to study the structure of homomorphism problems. In this case, the structure of the graph H has a big influence on the complexity of the problem. Thus, our approach is graph-theoretic. We give a complete solution for the class of cactus graphs, which are connected graphs in which every edge belongs to at most one cycle. Cactus graphs arise in many applications such as the modelling of wireless sensor networks and the comparison of genomes. We show that, for some cactus graphs H, counting homomorphisms to H modulo 2 can be done in polynomial time. For every other fixed cactus graph H, the problem is complete for the complexity class parity-P which is a wide complexity class to which every problem in the polynomial hierarchy can be reduced (using randomised reductions). Determining which H lead to tractable problems can be done in polynomial time. Our result builds upon the work of Faben and Jerrum, who gave a dichotomy for the case in which H is a tree.Comment: minor change

    Absorption Time of the Moran Process

    Get PDF
    The Moran process models the spread of mutations in populations on graphs. We investigate the absorption time of the process, which is the time taken for a mutation introduced at a randomly chosen vertex to either spread to the whole population, or to become extinct. It is known that the expected absorption time for an advantageous mutation is O(n^4) on an n-vertex undirected graph, which allows the behaviour of the process on undirected graphs to be analysed using the Markov chain Monte Carlo method. We show that this does not extend to directed graphs by exhibiting an infinite family of directed graphs for which the expected absorption time is exponential in the number of vertices. However, for regular directed graphs, we show that the expected absorption time is Omega(n log n) and O(n^2). We exhibit families of graphs matching these bounds and give improved bounds for other families of graphs, based on isoperimetric number. Our results are obtained via stochastic dominations which we demonstrate by establishing a coupling in a related continuous-time model. The coupling also implies several natural domination results regarding the fixation probability of the original (discrete-time) process, resolving a conjecture of Shakarian, Roos and Johnson.Comment: minor change

    Counting Homomorphisms to Cactus Graphs Modulo 2

    Get PDF
    A homomorphism from a graph G to a graph H is a function from V(G) to V(H) that preserves edges. Many combinatorial structures that arise in mathematics and computer science can be represented naturally as graph homomorphisms and as weighted sums of graph homomorphisms. In this paper, we study the complexity of counting homomorphisms modulo 2. The complexity of modular counting was introduced by Papadimitriou and Zachos and it has been pioneered by Valiant who famously introduced a problem for which counting modulo 7 is easy but counting modulo 2 is intractable. Modular counting provides a rich setting in which to study the structure of homomorphism problems. In this case, the structure of the graph H has a big influence on the complexity of the problem. Thus, our approach is graph-theoretic. We give a complete solution for the class of cactus graphs, which are connected graphs in which every edge belongs to at most one cycle. Cactus graphs arise in many applications such as the modelling of wireless sensor networks and the comparison of genomes. We show that, for some cactus graphs H, counting homomorphisms to H modulo 2 can be done in polynomial time. For every other fixed cactus graph H, the problem is complete for the complexity class +P which is a wide complexity class to which every problem in the polynomial hierarchy can be reduced (using randomised reductions). Determining which H lead to tractable problems can be done in polynomial time. Our result builds upon the work of Faben and Jerrum, who gave a dichotomy for the case in which H is a tree

    The #CSP Dichotomy is Decidable

    Get PDF
    Bulatov (2008) and Dyer and Richerby (2010) have established the following dichotomy for the counting constraint satisfaction problem (#CSP): for any constraint language Gamma, the problem of computing the number of satisfying assignments to constraints drawn from Gamma is either in FP or is #P-complete, depending on the structure of Gamma. The principal question left open by this research was whether the criterion of the dichotomy is decidable. We show that it is; in fact, it is in NP

    The Complexity of Weighted Boolean #CSP with Mixed Signs

    Get PDF
    We give a complexity dichotomy for the problem of computing the partition function of a weighted Boolean constraint satisfaction problem. Such a problem is parameterized by a set of rational-valued functions, which generalize constraints. Each function assigns a weight to every assignment to a set of Boolean variables. Our dichotomy extends previous work in which the weight functions were restricted to being non-negative. We represent a weight function as a product of the form (-1)^s g, where the polynomial s determines the sign of the weight and the non-negative function g determines its magnitude. We show that the problem of computing the partition function (the sum of the weights of all possible variable assignments) is in polynomial time if either every weight function can be defined by a "pure affine" magnitude with a quadratic sign polynomial or every function can be defined by a magnitude of "product type" with a linear sign polynomial. In all other cases, computing the partition function is FP^#P-complete.Comment: 24 page

    Time and Memory Efficient Parallel Algorithm for Structural Graph Summaries and two Extensions to Incremental Summarization and kk-Bisimulation for Long kk-Chaining

    Full text link
    We developed a flexible parallel algorithm for graph summarization based on vertex-centric programming and parameterized message passing. The base algorithm supports infinitely many structural graph summary models defined in a formal language. An extension of the parallel base algorithm allows incremental graph summarization. In this paper, we prove that the incremental algorithm is correct and show that updates are performed in time O(Δ⋅dk)\mathcal{O}(\Delta \cdot d^k), where Δ\Delta is the number of additions, deletions, and modifications to the input graph, dd the maximum degree, and kk is the maximum distance in the subgraphs considered. Although the iterative algorithm supports values of k>1k>1, it requires nested data structures for the message passing that are memory-inefficient. Thus, we extended the base summarization algorithm by a hash-based messaging mechanism to support a scalable iterative computation of graph summarizations based on kk-bisimulation for arbitrary kk. We empirically evaluate the performance of our algorithms using benchmark and real-world datasets. The incremental algorithm almost always outperforms the batch computation. We observe in our experiments that the incremental algorithm is faster even in cases when 50%50\% of the graph database changes from one version to the next. The incremental computation requires a three-layered hash index, which has a low memory overhead of only 8%8\% (±1%\pm 1\%). Finally, the incremental summarization algorithm outperforms the batch algorithm even with fewer cores. The iterative parallel kk-bisimulation algorithm computes summaries on graphs with over 1010M edges within seconds. We show that the algorithm processes graphs of 100+ 100+\,M edges within a few minutes while having a moderate memory consumption of <150<150 GB. For the largest BSBM1B dataset with 1 billion edges, it computes k=10k=10 bisimulation in under an hour

    The complexity of approximating bounded-degree Boolean #CSP

    Get PDF
    AbstractThe degree of a CSP instance is the maximum number of times that any variable appears in the scopes of constraints. We consider the approximate counting problem for Boolean CSP with bounded-degree instances, for constraint languages containing the two unary constant relations {0} and {1}. When the maximum allowed degree is large enough (at least 6) we obtain a complete classification of the complexity of this problem. It is exactly solvable in polynomial time if every relation in the constraint language is affine. It is equivalent to the problem of approximately counting independent sets in bipartite graphs if every relation can be expressed as conjunctions of {0}, {1} and binary implication. Otherwise, there is no FPRAS unless NP=RP. For lower degree bounds, additional cases arise, where the complexity is related to the complexity of approximately counting independent sets in hypergraphs
    corecore